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Positive-Operator-Valued Time Observable in 
Quantum Mechanics 
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We examine the longstanding problem of introducing a time observable in 
quantum mechanics; using the formalism of positive-operator-valued measures, 
we show how to define such an observable in a natural way and we discuss 
some consequences. 

1. INTR ODUC TION 

Since the very beginning of quantum mechanics it has been clear that 
it is not so easy to define time at a quantum level; in the ordinary theory, in 
fact, it is not an observable, but an external parameter, in other words, time 
is classical.  In considering changing this situation by promoting time to an 
observable, one has to face a theorem by Pauli (1958) that states, essentially, 
that such an operator cannot be self-adjoint; since in the usual quantum 
mechanics, observables are postulated to be self-adjoint operators (see, for 
example, Von Neumann, 1955, and Prugove~ki, 1971), this theorem consti- 
tutes a problem. 

One of the consequences of this is, for example, that one cannot deduce 
the Heisenberg uncertainty relation for time and energy from a kinematical 
point of  view because time does not belong to the algebra of observables. 
In spite of this the relation AT-  AH > 1 is commonly accepted as true and 
it is derived in some way from dynamical considerations. 

The situation is quite unsatisfactory both from a physical point of  view 
and from an epistemological point of view and although it has been investi- 
gated in many works (see, for example, Aharonov and Bohm, 1961; Rosen- 
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baum, 1969; Olkhovsky et al., 1974; Blanchard and Jadczyk, 1996; Grot 
et al., 1996), we are unaware of a definitive and satisfactory solution of 
the problem. 

The "problem of time" has some consequences also in the realm of 
quantum gravity, i.e., in the struggle to give a quantum description of space- 
time in order to solve some divergences problems in both general relativity 
(singularity theorems) and in quantum field theory (renormalization problem). 
A quantum "spacetime" with zero spatial dimensions and one time dimension 
(that is, the quantization of time) is the simplest model and we think it is 
preliminary to any other attempt. 

If one adopts the operational point of view (Bridgman, 1927), then 
defining the concept of time at a quantum level is equivalent to specifying 
a set of operations useful for the measurement of time; in this context the 
problem of time is the problem of building "quantum clocks." In this paper 
we analyze a simple model for such a quantum clock and try to draw some 
general conclusions on the problem. 

2. MATHEMATICAL PRELIMINARIES 

Our starting point is a generalized formulation of standard quantum 
mechanics that extends the usual observable concept. A justification of such 
a formulation is given by Gleason's theorem (Busch et al., 1991), which 
guarantees that this structure is the most general one compatible with the 
probablisitic interpretation of quantum mechanics (Copenhagen interpreta- 
tion); other justifications come from work by Ludwig (1968) and Giles (1970), 
but they are beyond the scope of this paper. In this section we summarize, 
in a very concise and incomplete way, the mathematical tools that we shall 
use later; for a good review of the subject, along with a very complete 
bibliography, see Busch et al. (1991), Giles (1970), and Davies (1976). 

A given quantum systemS~ described by a Hilbert space~e~ we call 
_~gr the algebra of bounded operators o n e ,  _~W') + the cone of positive ones, 
andg~,') the subalgebra of the trace-class operators. The states of the system 

~9~are the positive operators with trace one onY, f that  form a convex set ~g")T 
in o~-'). 

Given a measurable space (D, 9),  where 1-1 is a nonempty set and o~-a 
it-algebra of subsets of ~ a normalized posi t ive-operator-valued measure 
(a POV-measure) "r is a map 

"r: 5r---) 21g'O + 

such that: 

1. a'(X) -> -r(fl) = O, VX E ~.  
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2. "r(UXi) = E'r(Xi), where {Xi} is a countable collection of disjoint 
elements of ~r  and the convergence is in the weak topology. 

3. "r(l~) = I. 

If "r(X) 2 = "r(X), then r is a projection-valued measure (PV-measure) 
and it can be demonstrated that this property is equivalent to 

r(X N Y) = "r(X)'r(Y) 

If l~ is the real Borel space (R, ~q~(R)) and "r is a PV-measure, than it 
is a spectral representation of a unique self-adjoint operator A 

A = ff~ h'r(dk) (1) 

A generalized observable is a POV-measure on a particular measurable 
space, while a PV-measure, via the relation (1), represents an ordinary observ- 
able of  quantum mechanics. This generalization of the concept of  an observ- 
able is possible in view of  the probabilistic interpretation of quantum 
mechanics [for more details see Busch et al. (1991)]. Given an observable 
"r and a state p, we have a probability measure % on (l~ jr), 

xp: 9----~ [0, 1] 

%: X --~ Tr [p'r(X)] 

This can be interpreted as the probability that the measure of the observable 
x on the state p lies in the set X. 

The mean value of the observable "r on the state p is then 

mean(r, p) = f h'rp(dX) 

while the variance is given by 

var2('r, p) = fh2%(dh) - (mean (x, p))2 

Let i f  be a locally compact group, (D, ~ )  a measurable if-space, and U 
a unitary representation of i f  on a Hilbert space ~ ,  if -r is a POV-measure 
on (D, 50 with values in S'W) § then we say that 'r is covariant with respect 
to U if 

v~(~U~ = ~(x~) 

for every X ~ 9 - a n d  every g ~ if. The pair ('r, U) is called a system of 
covariance (Davies, 1976); if "r is a PV-measure, then (% U) is a system of 
imprimitivity (Mackey, 1963; Varadarajan, 1984). 

The condition of covariance means that 

( UgT(~U Dp = ~u'~pv~(S) 
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As stated in the introduction, due to an argument by Pauli (1958), it is 
not possible to have a self-adjoint operator for a time observable in quan- 
tum mechanics: 

T h e o r e m  I (Pauli). Given an observable (time) T with the following 
commutation relation with the Hamiltonian, 

[H, T] = - i  

then T cannot be a self-adjoint operator. 

In the language of POV-measures, the theorem means that a time observ- 
able cannot form a system of imprimitivity with the time translations, but it 
can still form a system of  covariance with them. In fact, Pauli's Theorem is 
a consequence of the following general proposition: 

Propos i t ion  1. If 'r is a POV-measure on R and it is covariant with 
respect to the one-parameter group of  translations, then 

(d,J'r((a, b])J,l,) > 0, Vd, ~ 

for every interval (a, b]; this means that -r cannot be a PV-measure. 

P r o o f  For the demonstration of  the proposition we can proceed in the 
following way: suppose that we have a POV-measure -r for the observable 
time and that it forms a system of  covariance with U = exp(-iM-/) ,  where 
H is the generator of  the translations. Suppose that for a given pure state qb 
and a certain interval of  the real line (a, b] we have 

(~l'r((a, b])ld~) = 0 

Then 

(qblr((a + X, b - c + k])ldp) = 0, VX ~ [0, c] 

and, for the covariance property, 

(cble- i~ 'r( (a ,  b - c])e~ = 0 

and so 

(d~le-'Xn~/'r((a, b - c])~/r((a, b - c])ei~l~b) = 0 

for the positivity of "r. Finally we have 

F(h) - -  x/'r((a, b - c])eiXttl+) = O, V• ~ [0, c] 

But F(h) is a holomorphic vector-valued function in the upper half of  the 
complex plane that is zero on the interval [0, c]; using the R i e m a n n - S c h w a r z  
ref lect ion p r inc ip l e  (Titchmarsh 1939), one can prove that such a function, 
being zero on an interval, is zero everywhere. This means that (d~l'r((a + c 
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- h, b - h])ls is zero for all the values of h, i.e., (s is zero on 
all the intervals of R and this is impossible if -t has to be a normalized 
POV-measure. QED 

3. A MODEL FOR A QUANTUM CLOCK 

In this section we analyze a particularly simple model for a quantum 
clock (Rosenbaum, 1969; Toiler, 1996) using the mathematical formalism of 
the preceding section. 

Let us consider a one dimensional system represented by the Hilbert 
space 

= L2(R) 

We have, as usual, a coordinate q observable along with its momentum p 
(in this case, ordinary observables) such that 

[q, p] = i 

Moreover, this "clock" has a Hamiltonian equal to 

H = p212 

We can interpret q as the time displayed by the clock and p as the rate of 
the clock itself. In a classical model the real time would be 

T =  qlp 

but in the quantum case we have to take care of the ordering of  the operators. 
We have to perform an arbitrary choice and we follow Toiler (1996), putting 

T = (2p)- lq + q(2p) - l  

This operator can be defined on the domain (in the "p-representation") 
of infinitely differentiable functions over the compact subsets of R - {0}, 
which is dense in ~ (it is also possible to use as the domain the set of 
infinitely differentiable functions over the compact subsets of  R and then 
imposing the condition of Hermiticity, which gives limp_,o[d~(p)/x/p] = O, 
V~b e ~(T)) .  

It is easy to see that Tis Hermitian and the expected commutation relation 

[H, T] = - i  

is satisfied on ~(T) .  Now, for the Pauli theorem, we know that T cannot be 
an ordinary observable, but we can still see if it can be interpreted in the 



1580 Giannitrapani 

generalized framework of the preceding section. To do so we have to find a 
POV-measure "r on R such that 

Moreover, ('r, U) has to be a covariance system with U = exp(-ihH) a 
representation of the time-translation group r 

In order to build "r, let us start to search the eigenstates of T; it is 
convenient to work in the momentum representation instead of the usual 
coordinate representation (in this way it is simpler to define the operator 
p- l) .  In such a representation we have 

d d 
T = i(2p) -~ ~pp + i ~pp (2p) -t 

The eigenvector problem reads 

?lt) = tit) 

and defining the wavefunction 0t(P) as 

O,(p) = ( p i t >  

we have 

TOt(P) = tOt(p) 
This equation defines a double family of  eigenfunctions: 

l ( " ~ )  - ~  ap 
(pit, ~) = O,.(p) = - ~  O(~p) I ~  exp 

with ~ = _+ 1. They do not lie in ~ ,  and so they have to be regarded as 
weak eigenfuncfions: 

<t, otl(T - t)16) = O, V~b e ~(T)  

We can also see easily that the eigenvectors of  T are not orthogonal 

(t, ~tlt', or') = 0 with ~ =/: ct' 

1 i 1 
(t, ~dt', ~t) = ~ 8(t - t') + ~ P "tr(t - t'-~ 

The following relation still holds (in the weak sense): 

~ f +_? dt lt, eO(t, oLl = l 
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At this point we can state the following propositions: 

Proposition 2. a-(dO = ~,~ It, cO(t, otl dt gives a POV-measure 

a-(X) = Ix a-(dt) = ~ Ix lt, ot)(t, od dt 

with X a Borel set of the real line. 

Proposition 3. The system (a-, U), where U = exp ( - ikH)  is a representa- 
tion of the one-parameter group ~ of time translations, is a covariance system. 

Proof. Let us start from the first one; obviously a-(X) is a positive 
operator; moreover, it is bounded, 

a-(X)-< a ' (R)= ~ I+_] dt It, ~t)(t, ell = 1  

so that a-(X) ~ ~+(~).  The tr-additivity follows from the additivity of integrals 
and a- is normalized to 1. 

For the second proposition one can see that 

eiXnlt, et) = It - k, or) 

and so 

(d~leiXHa-(X)e-iXnld:) = fx ( d:le'Xna-( dt)e-i~l~ ) 

~ dt (~leiUClt, et)(t, ale-i~l~) 

f 
= ~ Jx dt (d:It- k, ~)(t- k, txl,) 

= (d:ta-(x- • 

which is the relation of covariance of the POV-measure a-. QED 

In conclusion we can say that a- is a generalized observable for the time 
of our quantum clock; it can be checked that a- is not a PV-measure (essentially 
this is a consequence of the nonorthogonality of the eigenvectors of T) and 
so there is no contradiction with the Pauli Theorem. 

We have studied a particular POV-measure for a time observable obtained 
by choosing a very particular time operator; the next step is to study POV- 
measures for time regardless of operator. The interesting object is the space 
of POV-measures that form a system of covariance with a representation of 
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time translations; the task is to find in such a space the "best" measures to 
be used for quantum clocks. This will be the argument of a future paper. 

4. UNCERTAINTY RELATIONS 

We now can examine the uncertainty relations for time and energy from 
a kinematical point of view, as stated in the introduction. 

If we define, for a Hermitian operator A, the quantity 

( O ' a )  2 = (~blA21~b) - ((dplAl~b)) 2 with (~bldp) = 1 

we can prove (von Neumann, 1955) that for the operators T and H of the 
preceding section (they are Hermitian) the following relation is true on a 
certain domain of ~ :  

crrcrn >-- 1/2 

This relation is commonly accepted as the equivalent for time and energy of 
the famous Heisenberg relation for position and momentum; the fact is that 
the quantity err is not, in general, the variance of the observable time AT, 
because T is a generalized observable and it is not a self-adjoint operator. 
But in our simple model the two quantities coincide; in fact we can write 

lldp) = ~ f f f  dt It, ot)(t, al/qd~), Vide) E ~(T)  

for the property of r exposed in the preceding section; since It, a)  is a weak 
eigenvector of  T, we have 

77d:) = ~ I+~ dt tlt, o0(t, otld~) 

From this relation one sees that the mean of T, as defined in Section 2, is 
the usual one 

(d#171~b) = ~ f+f dt t(d~lt, cO(t, cxl~b) 

= f+_~ t(d:lx(dt)ld:) = mean(r, ok) 

Using the relation 

(*IT2ldp}=~]~I+| _ 
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we obtain 

where 

(dplT21d~) = ~ _ t2(dpl'r(dt)ldp) + A+ 

A,~ = ~, dt dt' t'dp(t', et)tdp(t, a)P 

with d~(t, or) = (t, otl~b). One can check that 

A ,  = ~ t2(dpl'r(dt)ld~) 

and then 

(t' - t) 

C+~ 
(dplr21~b} = J_~ t2(~blx(dt)ldp) 

In the end we have for the generalized observable x 

crr= varO', +) 

and so the uncertainty relation for time and energy variances is obtainable 
in a rigorous way within the POV-measure formalism. 

5. CONCLUSIONS 

We have shown how it is possible to give a well-defined meaning to 
the concept of time observable at a quantum level using the POV-measure 
formalism; in particular we have studied a simple quantum clock model, 
giving a precise mathematical derivation of the Heisenberg uncertainty rela- 
tion for time and energy. Since clocks are fundamental in the operational 
definition of spacetime, we believe this is a preliminary step toward an 
analysis of spacetime concepts at a quantum level, an analysis that we hope 
to present in future works. 
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NOTE ADDED IN PROOF 
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Quantum Theory, Physics Letters A, 191, 357. 
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